

TITL		PRODUCT SPECIFICATIONS			
MODEL No.		PUSH SWITCH (MP2216)			PAGE $2 / 3$
	PROPERTY	TEST CONDITION			PERFORMANCE
4.4	Solderability	The test is conducted under the following condition. Soldering temperature : $260 \pm 5^{\circ} \mathrm{C}$ Dipping time : 3 ± 0.5 초			* Over 90\% of the immersed part shall be covered with solder.
4.5	Permissible soldering times	Less than two times The second soldering would be conducted after the temperature goes down to a normal temperature.			
4.6	Preheat temperature	Less than two times The second soldering would be conducted after the temperature goes down to a normal temperature.			
4.7	Preheat time	Less than 60seconds			
4.8	Soldering heat resistance	The test is conducted under the following condition. Temperature and dipping time			* Shall be free from a remarkable change in appearance. * The electrical performance requirement specified in Item 3 shall be met.
			Temperature (${ }^{\circ} \mathrm{C}$)	Time (sec)	
		Dip soldering	260 ± 5	5 ± 1	
		Manual soldering	350 ± 10	3	
5. DURABILITY					
	PROPERTY	TEST CONDITION			PERFORMANCE
5.1	Mechanical operation	10,000cycles operation at the rate of 15-20 cycles/minute without load shall be done.			* Contact resistance : 1Ω max * Insulation resistance : 10Ms min * Dielectric strength : no dielectric breakdown shall take place when 500 V AC is applied for 1 minute. * Operating force: within $+10 \%$ of the initial value. * No abnormality shall be recognized in appearance and structure.
5.2	Mechanical operation with electrical load	10,000 cycles operation at the rate of 15-20 cycle/minute with load 0.1A, 30V DC			
6. WEATHER PROOF					
	PROPERTY	TEST CONDITION			PERFORMANCE
6.1	Cold heat proof	After testing at $-20 \pm 2^{\circ} \mathrm{C}$ for 96 hrs,the sample is allowed to stand under normal temperature and humidity conditions for 1 hour and measurement is performed within 1 hour after that. Water drops should be wiped off.			* Contact resistance : $200 \mathrm{~m} \Omega$ max * Insulation resistance :100M\& min * Dielectric strength : no dielectric breakdown shall take place when 500 V AC is applied for 1 minute. * Operating force : within $+10 \%$ of the initial value. * No abnormality shall be recognized in appearance and structure.
6.2	Dry heat proof	After testing at $85 \pm 2^{\circ} \mathrm{C}$ for 96 hrs, the the sample is allowed to stand under normal temperature for 1 hour and measurement is performed within 1 hour after that.			
6.3	Damp heat proof	After testing at $40 \pm 2^{\circ} \mathrm{C}$ and $90 \sim 95 \%$ in relative humidity for 96 hrs , the sample is allowed to stand under normal temperature and humidity conditions for 1 hour, and measurement is performed within 1 hour after that. Water drops should be wiped off.			

TITLE	PRODUCT SPECIFICATIONS	
MODEL No.	PUSH SWITCH (MP2216)	PAGE
3. SOLDERING 3.1 Auto soldering conditions		
Items		
Preheat temperature	$110^{\circ} \mathrm{C}$ max (Environmental temperature of soldering surface of P.W.B)	
Preheat time		60 sec max
Area of flux	$1 / 2$ max of P.W.B thickness	
Temperature of solder	$260^{\circ} \mathrm{C}$ max	
Time of immersion	Within 5 sec	
Soldering number	Within 2 times (But should bring down heat of the first soldering)	
Printed wiring board	Single sided copper-clad laminates	

title	PRODUCT SPECIFICATIONS	
model no.	PUSH SWITCH	PAGE

Caution

1. Appling load to terminals during soldering under certain conditions may cause deformation and electrical property degradation.
2. Avoid use of water-soluble soldering flux, since it may corrode the switches.
3. Check and conform to soldering requirements under actual mass production conditions.
4. When soldering twice, wait until the first soldered portion cools to normal temperature. Continuous heating will deform the external portions, loosen or dislodge terminals, or may deteriorate their electrical characteristics.
5. Flux from around and above the PC board should not adhere to the switches.
6. After mounting the switches, if you intend to put the board into an oven in other to harden adhesive for other parts, please consult with us.
7. Before soldering switches with locking mechanism, release the locks. If they are soldered without releasing the locks the soldering heat may deform the locking mechanism.
8. If you use a through-hole PC board or a PC board thinner or ticker than the recommendation, hear may be greater heat stress. Verify the soldering conditions thoroughly before use..
9. Solder the switches with detent at the detent position. Soldering switches fixed at the center of the detent may deform the detent machanisms.
10. No cleaning.
11. Protect small and thin switches from external forces in the set mounting process.
12. Tighten the mounting screws by applying the specified torque. Tightening with larger torque than the specified one will result in malfunction or breakage of screws.
13. The products are designed and manufactured for direct current resistance. Contact us for use of other resistances such as inductive (L) or capacitive (C).
14. The switch will be break if you apply a greater stress than that specified. Take great care not to let the switch be subject to greater stress than specified.
15. Be sure to release the locks before removing the knobs. Otherwise, the locking mechanism may be deformed.
16. Be sure to use the forced travel close to the position of the whole travel as much as possible.
17. Insert these switches to the specified mounting surface and mount them horizontally. If not mounted horizontally, these switches will malfunction.
18. Use of the switches in a dusty environment may lead the dusts entering through the openings and cause imperfect contact or malfunction. Take this into account for set design.
19. Corrosive gas if generated by peripheral parts of a set, malfunction such as imperfect contact may occur. Thorough investigation shall be required beforehand.

20. Storage

(1) Storage the products as delivered, at a normal temperature and humidity, without direct sunshine and corrosive gas ambient. Use them at an earliest possible timing, not later than six months upon receipt.
(2) After breaking the seal, keep the products in a plastic bag to prevent out ambient air, store them in the same environment as above, and use all as soon as possible.
(3) Do not stack too many switches.
21. All specification can be changed to improve performance without any notice.

